Size effects in Al nanopillars: Single crystalline vs. bicrystalline

نویسندگان

  • Allison Kunz
  • Siddhartha Pathak
  • Julia R. Greer
چکیده

The mechanical behavior of bicrystalline aluminum nano-pillars under uniaxial compression reveals size effects, a stochastic stress– strain signature, and strain hardening. Pillar diameters range from 400 nm to 2 lm and contain a single, non-sigma high angle grain boundary oriented parallel to the pillar axes. Our results indicate that these bicrystalline pillars are characterized by intermittent strain bursts and exhibit an identical size effect to their single crystalline counterparts. Further, we find that the presence of this particular grain boundary generally decreases the degree of work hardening relative to the single crystalline samples. These findings, along with transmission electron microscopy analysis, show that nano-pillar plasticity in the presence of a grain boundary is also characterized by dislocation avalanches, likely resulting from dislocation nucleation-controlled mechanisms, and that at these small length scales this grain boundary may serve as a dislocation sink rather than a dislocation source. 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure versus size: mechanical properties of electroplated single crystalline Cu nanopillars.

We report results of uniaxial compression experiments on single-crystalline Cu nanopillars with nonzero initial dislocation densities produced without focused ion beam (FIB). Remarkably, we find the same power-law size-driven strengthening as FIB-fabricated face-centered cubic micropillars. TEM analysis reveals that initial dislocation density in our FIB-less pillars and those produced by FIB a...

متن کامل

The In-situ Mechanical Testing of Nanoscale Single-crystalline Nanopillars

Common materials like metals appear to have unique and interesting properties when reduced to nanoscale. One example is that they become signifi cantly stronger, exhibiting strengths an order of magnitude higher than bulk. Understanding material strength at the appropriate scale is crucial in the design and reliable functioning of devices comprised of these materials. This article reviews recen...

متن کامل

Emergence of enhanced strengths and Bauschinger effect in conformally passivated copper nanopillars as revealed by dislocation dynamics

The ability to precisely control the surface state of a nanostructure may offer a pathway towards tuning the mechanical properties of small-scale metallic components. In our previous work [Jennings et al., Acta Mater. 60 (2012) 3444–3455], single-crystalline Cu nanopillars were conformally coated with a 5–25 nm thick layer of TiO2/Al2O3. Uniaxial compression tests revealed two key findings asso...

متن کامل

Microscopic model for fracture of crystalline Si nanopillars during lithiation

Silicon (Si) nanostructures are attractive candidates for electrodes for Li-ion batteries because they provide both large specific charging capacity and less constraint on the volume changes that occur during Li charging. Recent experiments show that crystalline Si anodes expand highly anisotropically through the motion of a sharp phase boundary between the crystalline Si core and the lithiated...

متن کامل

Nanopillar lasers directly grown on silicon with heterostructure surface passivation.

Single-crystalline wurtzite InGaAs/InGaP nanopillars directly grown on a lattice-mismatched silicon substrate are demonstrated. The nanopillar growth is in a core-shell manner and gives a sharp, defect-free heterostructure interface. The InGaP shell provides excellent surface passivation effect for InGaAs nanopillars, as attested by 50-times stronger photoluminescence intensities and 5-times gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011